

目次

- ·動機
- ・環境問題から見たインクをとりまく現状
- ・インクの製法
- ・製法の違いから生じる排出物質の定量評価
- ・各インクによる環境影響の定量評価 (定量評価はインク1kgあたり)
- •結論

動機

・どの紙にも大量にインクが使用され、紙と同様にインクも年間に大量に消費される。

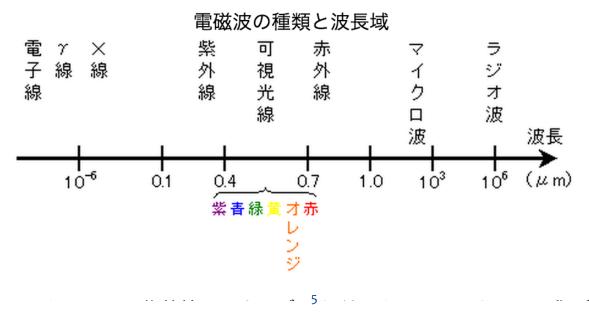
用紙などは、古紙利用などで環境対策がなされているが、インク自体はその環境影響に関する策定がなされ、それの改善の努力がなされているか、興味を持った。

インクをとりまく現状

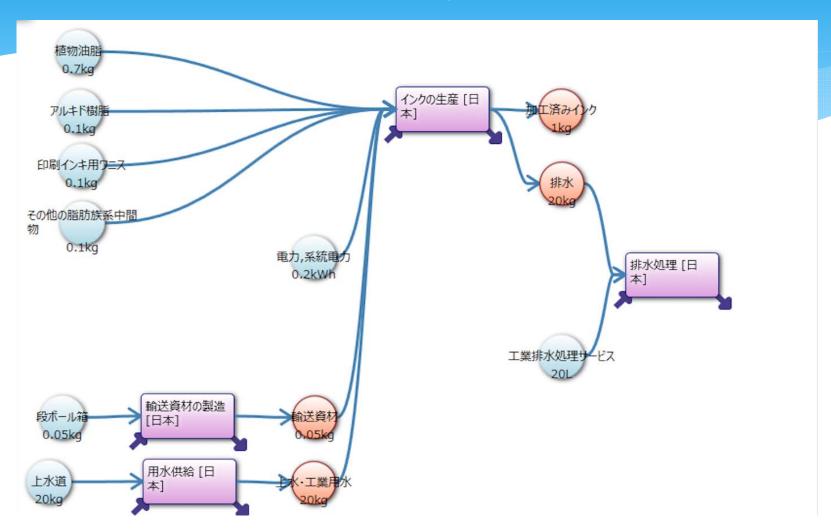
油性インク(従来型)

- ・・・従来型のインク。有害物質の発生源(トルエン)を含む有機揮発性化合物を排出しない(原則、無溶剤)のため環境にやさしい。
- ・ 熱乾燥と比較して省エネルギーである。
- ・ 熱がかかりにくく、熱に弱いプラスチックなど応用基材の範囲が広い。

UVインク(新型)


- ・・・油性インクと違い、
 - ○インキ価格、UVランプ価格が高い。
 - ○早期の乾燥
 - ○摩擦態勢に優れる。
 - ○色調は油性の方が優れる
 - ○ノントルエン

UVインキとは


UVインキとは

紫外線(UV)可視光線により、短波長の波長が0.1~0.4μmの光で、人の眼で感じることができない。

この紫外線のエネルギーを利用することにより乾燥(硬化)させるインキである。

インクの製法

インクにおける排出物質の策定

○原反(紙・PP・PETなど)に使用されるインクの

CO2 トルエンなど有害物質

に絞り、影響評価を行った。

原反のCO2・有害物質排出量

・原反のCO2・有害物質の排出量については、紙の種類によって差がある

Ex) コート紙(普通のコピー用紙)を基準にした排出量比較

洋紙・・・100~110% 板紙・・・72~74% パルプ紙・・・19%

原反のCO2・有害物質排出単位

紙のCO2e*1排出原単位の比較(コート紙を基準とした場合の洋紙・板紙比較)

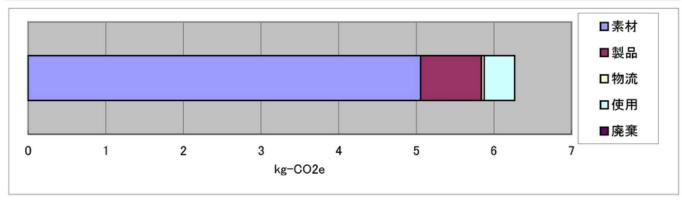
分類 種類	コート紙を基準とし た場合の比率	120%	
コート紙	100%	100%	
上質紙	111%	80%	
カートカード	72%	40%	
コートボール	74%	20%	
その他 パルプ化(リサイクル)	19%	0% コート紙 上質紙	コートカード コートボール

*1:CO₂e=二酸化炭素換算量(CO₂ equivalent)

出典:shimizu print inc 一環境品質ナレッジベースhttps://www.shzpp.co.jp/kb/detail.php?sid=523

印刷版のCO2排出量算定

社外秘 2012/2/4 1ページ


CtP版 サーマルタイプ処理液あり (0.30mm厚/1m)

項目	素材	製品	物流	使用	廃棄	슴計
地球温暖化(CO2換算值:kg-CO2e/版)	7.820	1.210	0.053	0.609	0.000	9.692

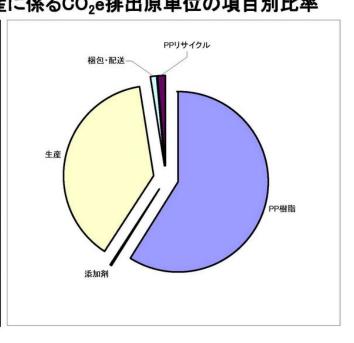
弊社使用の印刷版の厚み・寸法に換算

CtP版 サーマルタイプ処理液あり (0.24mm厚/0.80855m=1030mm×785mm)

項目	素材	製品	物流	使用	廃棄	合計
地球温暖化 (CO2換算值:kg-CO2e/版)	5.058	0.783	0.034	0.394	0.000	6.269

参照:(社)産業環境管理協会 エコリーフ環境ラベル 富士フイルム【平版印刷用 PS版(CTP版含む)(適用PCR番号:DA-01)】

注)参照データの素材・製品・物流・使用・廃棄についてのみ表記(リサイクル効果には除外)


出典:shimizu print inc 一環境品質ナレッジベース https://www.shzpp.co.jp/kb/detail.php?sid=530

原反のCO2・有害物質排出原単位

インクの生産、つまり 材料混合→精製→梱包の流れの中で、 過程において最もCO2排出量が多いのは 当該工場のPP生産に係るCO2e排出原単位の項目別比率

侧用此一 [*]	50%
インク精製・	••38.4%

31007
比率
58.9%
0.2%
38.4%
1.1%
1.4%

出典:shimizu print inc 一環境品質ナレッジベース https://www.shzpp.co.jp/kb/detail.php?sid=524

インキ使用量の予測

社外秘 2012/1/2 1ページ

項	iΒ	原単位算出方法	重量比率	를		藍	ŧ	糸	I	黄		OP=Z	
生産エネルギ	ギー	積上げ法		油性	<u>UV</u>	油性	<u>UV</u>	油性	<u>UV</u>	油性 <u>UV</u>		油性	<u>UV</u>
	顔料	連関法+積上げ法	0~24%	0.44	<u>0.44</u>	0.44	<u>0.44</u>	0.44	<u>0.44</u>	0.44	<u>0.44</u>	0.44	<u>0.44</u>
原料	樹脂·植物油	連関法+積上げ法	52 ~ 68%	1.26	<u>0.55</u>	2.96	<u>2.96</u>	2.08	<u>2.08</u>	2.08	2.08	0.00	<u>0.01</u>
) ,,,,,,,	溶剤	連関法	21~30%	0.69	<u>2.24</u>	0.72	<u>2.17</u>	0.72	<u>2.17</u>	0.77	2.36	0.96	<u>2.69</u>
	添加剤	未評価(按分)	3%	0.11	0.48	0.12	0.60	0.12	0.60	0.12	0.60	0.15	<u>0.60</u>
廃棄(ロス)		環境省数値	0.3%	0.01		0.01		0.01		0.01		0.01	
合計:				2.50	<u>3.71</u>	4.24	<u>6.17</u>	3.35	<u>5.29</u>	3.42	<u>5.48</u>	1.55	<u>3.74</u>

¹⁾原材料の運搬・容器によるCO2排出量なし

墨を見ると、溶剤の欄が環境に配慮しているはずのUVが多くなっている。これは、 有害物質である有機溶剤が少なく、無害な無機溶剤を大量に使っていると考察できる。

出典:shimizu print inc 一環境品質ナレッジベース https://www.shzpp.co.jp/kb/detail.php?sid=529

²⁾配合比率はLCAフォーラム及びメーカー値を参照

³⁾排出原単位は積上げ法による数値を優先し、該当無い場合は3EID(2000)の数値(類似物質の場合もあり)を参照

UVインク 環境影響評価(インク1kgあたり)

影響領域 全体	インクの生産 輸送・イング	クの生産 用水供給 輸送:用水供給	輸送資材の製造	輸送:輸送資材の製造 排	
全影響領域	32.8451562	0 ^{0.07418365} 7	0 0.39646205	7 0	0.274002193 0
地球温暖化	10.82497966	o ^{0.01757669} 1	0 0.16208546	8 0	0.09623561 0
光化学オキシダント	0.00836345	0 6.26E-05	0 0.00011549	6 0	0.000389303 0
資源消費	13.10217709	0 0.00521581 4	0 0.05608991	1 0	0.046254933 0
酸性化	0.593664646	0 0.00051932 9	0 0.00774669	6 0	0.00503966 0
廃棄物	1.576598919	0 0.04473178 5	0 0.08305347	1 0	0.070183174 0
オゾン層破壊	0	0 0	0	0 0	0 0
富栄養化	2.54E-05	0 2.08E-07	0 3.35E-0	6 0	1.10E-06 0
生態毒性(大気)	0.138309417	0 0.00100845 6	0 0.00188163	5 0	0.00633493 0
生態毒性(水圏)	0.000690668	0 4.49E-06	0 9.32E-0	6 0	3.51E-05 0
生態毒性(陸域)	0	0 0	0	0 0	0 0
土地利用	0	0 0	0	0 0	0 0
都市域大気汚染	6.589760316	0 0.00498754 1	0 0.0853331	5 0	0.049045063 0
室内空気汚染	0	0 0	0	0 0	0 0
人間毒性(大気)	0.010558995	0 7.65E-05	0 0.00014319	1 0	0.00048194 0
人間毒性(水圏)	2.76E-05	0 1.79E-07	0 3.73E-0	7 0	1.41E-06 0
人間毒性(陸域)	0	0 0 13	0	0 0	0 0

油性インク 環境影響評価(インク1kgあたり)

影響領域 全体	インクの生産 輸			輸送資材の製造	輸送:輸送資材の製造 丿	用水供給	輸送:用水 供給
全影響領域	46.29027904	0 0.27400219 0 3	0	0.396462057	0	0.074183657	0
地球温暖化	15.0948883	0 0.09623561	0	0.162085468	0	0.017576691	0
光化学オキシダント	0.012085307	o ^{0.00038930}	0	0.000115496	0	6.26E-05	0
資源消費	18.11934027	0 0.04625493 0 3	0	0.056089911	0	0.005215814	0
酸性化	0.84615996	0 0.00503966	0	0.007746696	0	0.000519329	0
廃棄物	2.392024469	0 ^{0.07018317}	0	0.083053471	0	0.044731785	0
オゾン層破壊	0	0 0	0	0	0	C	0
富栄養化	3.81E-05	0 1.10E-06	0	3.35E-06	0	2.08E-07	0
生態毒性(大気)	0.200825083	0 0.00633493	0	0.001881635	0	0.001008456	0
生態毒性(水圏)	0.001037493	0 3.51E-05	0	9.32E-06	0	4.49E-06	0
生態毒性(陸域)	0	0 0	0	0	0	C	0
土地利用	0	0 0	_	0	0	C	0
都市域大気汚染	9.608493247	o ^{0.04904506}	0	0.08533315	0	0.004987541	0
室内空気汚染	0	0 0	0	0	0	C	0
人間毒性(大気)	0.015345265	0 0.00048194	. 0	0.000143191	0	7.65E-05	0
人間毒性(水圏)	4.15E−05	0 1.41E-06	0	3.73E-07	0	1.79E-07	0
人間毒性(陸域)	0	0 0	0 14	0	0	C	0

結果

- ・ノントルエンの勝ち!
 - ○CO2排出量の影響の大きい地球温暖化
 - ○トルエンの排出による人間・生態毒性や都市域 大気汚染

に優れる

以上より、UVインクの方が、 環境負荷の大きい溶剤使用料が大きい。 一方で、環境負荷が大きいのはトルエンなどの有機溶 剤であり、無機溶剤の利用が多くなっていると考えられる。

社論

まとめ

・紙印刷によるCO2・有害物質排出量に焦点を当てると、

樹脂原料の混入・インク生成の際に多くのCO2・ 有害物質が排出される。

・有害物質の排出まで勘案すると UVインク(ノントルエンインク)は従来の油性インクより環境への総合的負荷は小さく、利用に対するインセンティブは大きい。

その他の出典

- •google 特許検索 インク組成物(MILCA使用時に利用) http://www.google.com/patents/WO2010001887A1?cl=ja
- ・東京インキ株式会社HP

http://tokyoink.co.jp/ink_guide/index.html

・印刷インキ連合会(印刷の基礎知識獲得に利用)

http://www.ink-jpima.org/ink_kanryou.html#05